A class of group divisible designs with block size three and index λ

نویسندگان

  • J. Wang
  • L. Yin
چکیده

We investigate the existence of group divisible designs (GDDs) with block size three, group-type gw and index λ. We prove that the elementary necessary conditions for the existence of such a GDD are also sufficient, which generalizes the result of Colbourn, Hoffman and Rees.

منابع مشابه

Class-Uniformly Resolvable Group Divisible Structures I: Resolvable Group Divisible Designs

We consider Class-Uniformly Resolvable Group Divisible Designs (CURGDD), which are resolvable group divisible designs in which each of the resolution classes has the same number of blocks of each size. We derive the fully general necessary conditions including a number of extremal bounds. We present some general constructions including a novel construction for shrinking the index of a master de...

متن کامل

Splitting group divisible designs with block size 2×4

The necessary conditions for the existence of a (2 × 4, λ)-splitting GDD of type g are gv ≥ 8, λg(v−1) ≡ 0 (mod 4), λg2v(v−1) ≡ 0 (mod 32). It is proved in this paper that these conditions are also sufficient except for λ ≡ 0 (mod 16) and (g, v) = (3, 3).

متن کامل

Modified group divisible designs with block size 4 and λ>1

It is shown here that the necessary conditions for the existence of MGD[4, A m, n] for A ~ 2 are sufficient with the exception of MGO(4, 3, 6,23].

متن کامل

Resolvable Modified Group Divisible Designs with Block Size Three

A resolvable modified group divisible design (RMGDD) is an MGDD whose blocks can be partitioned into parallel classes. In this article, we investigate the existence of RMGDDs with block size three and show that the necessary conditions are also sufficient with two exceptions. # 2005 Wiley Periodicals, Inc. J Combin Designs 15: 2–14, 2007

متن کامل

Concerning cyclic group divisible designs with block size three

We determine a necessary and sufficient condition for the existence of a cyclic {3}-GDD with a uniform group size 6n. This provides a fundamental class of ingredients for some recursive constructions which settle existence of k-rotational Steiner triple systems completely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010